Publication: 1st-degree Atrioventricular (AV-block) and Bundle Branch Block Prediction using Machine Learning
dc.contributor.author | Rasel, Risul Islam | |
dc.contributor.author | Sultana, Nasrin | |
dc.contributor.author | Meesad, Phayung | |
dc.contributor.author | Chowdhury, Anupam | |
dc.contributor.author | Hossain, Meherab | |
dc.date.accessioned | 2023-12-16T10:55:15Z | |
dc.date.available | 2023-12-16T10:55:15Z | |
dc.date.issued | 2020 | |
dc.date.issuedBE | 2563 | |
dc.description.abstract | Heart block occurs when the flow of electricity interrupted or partially delayed between the top and bottom chambers of the heart. People are now more often affected by this kind of disease. However; early prediction of heart block can reduce the diagnosis complexity and treatment cost. In this study; a data mining and machine learning model is proposed to predict three types of heart blocks; such as 1st-degree A-V block; Left Bundle Branch Block (LBBB); and Right Bundle Branch Block (RBBB). Experiment data samples are collected from the cardiology department of Chittagong Medical College Hospital (CMCH); Bangladesh. The dataset contains 32 types of numeric and categorical features about the patient's ECG report; daily activities; and food habits. The prediction model has been designed; trained; and tested with some empirical machine learning algorithms namely Decision Tree; Random Forest; K-Nearest Neighbor; and Support Vector Machine. Finally; the experimentation shows that Decision Tree and Random Forest models outperform the other algorithms in overall heart block prediction with an accuracy of more than 92%. | |
dc.identifier.doi | 10.1145/3406601.3406647 | |
dc.identifier.isbn | 978-1-4503-7759-1 | |
dc.identifier.uri | https://harrt.in.th/handle/123456789/8402 | |
dc.language.iso | en | |
dc.publisher | Association for Computing Machinery | |
dc.publisher.place | King Mongkut’s University of Technology Thonburi : Bangkok | |
dc.relation.ispartofseries | IAIT2020 | |
dc.subject | การเรียนรู้ของเครื่อง | |
dc.subject | ต้นไม้ตัดสินใจแบบจำแนก | |
dc.subject | ต้นไม้ตัดสินใจแบบถดถอย | |
dc.subject | Computing Methodologies | |
dc.subject | Machine Learning | |
dc.subject | Machine Learning Approaches | |
dc.subject | Classification And Regression Trees | |
dc.subject.isced | 0322 บรรณารักษ์, สารสนเทศ และการศึกษาจดหมายเหตุ | |
dc.subject.oecd | 5.8 นิเทศศาสตร์และสื่อสารมวลชน | |
dc.title | 1st-degree Atrioventricular (AV-block) and Bundle Branch Block Prediction using Machine Learning | |
dc.type | เอกสารตีพิมพ์ในการประชุม (Conference Proceedings) | |
dspace.entity.type | Publication | |
harrt.researchArea | สารสนเทศศาสตร์ | |
harrt.researchGroup | บรรณารักษศาสตร์และสารสนเทศศาสตร์ | |
harrt.researchTheme.1 | Data Science | |
harrt.researchTheme.2 | Machine Learning | |
mods.location.url | https://doi.org/10.1145/3406601.3406647 | |
oaire.citation.title | Proceedings of the 11th International Conference on Advances in Information Technology | |
oairecerif.author.affiliation | University of Chittagong. Department of CSE |